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Axial Dispersion of Sedimented Colloids

DENNIS C. PRIEVE

DEPARTMENT OF CHEMICAL ENGINEERING
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

Abstract

After an ensemble of identical particles has had time to settle along the y-axis to
their equilibrium distribution in a field of potential energy ¢(y) by gravity, but
prevented from adsorbing by double-layer repulsion, their dispersion by Poiseuille
flow between two horizontal plates is predicted. The residence-time distribution of
particles is obtained in terms of ¢(v). For chromatographic peaks with long retention
times, equations are obtained relating the elution volume and dispersion coefficient to
#(y). From such data, two pieces of information regarding ¢(y) can be deduced: the
location of the minimum, y,,, and ¢"(y,,). However, at the opposite extreme of very
short retention times, a major portion of the profile ¢{(y) can be deduced from a single
chromatogram. Such an experiment might provide the first measuremem of long-
range forces between a colloid particle and a flat plate.

Several variants of liquid-exclusion chromatography (/-4) have been
proposed or developed for analyzing mixtures of colloids. Two of these—
“field-flow fractionation” (2) and ““hydrodynamic chromatography” (/)—have
been extensively studied. While particle size can be the basis of separation in
all of these techniques, some techniques also show sensitivity to other
particle properties such as the density, charge, or dielectric constant. In the
case of hydrodynamic chromatography (I), the double-layer and van der
Waals interactions between the particle and the stationary phase signifi-
cantly alter the elution volume (I, 5). A simple explanation is that double-
layer repulsion, for example, pushes particles away from the stationary phase
and out into a region of higher carrier velocity so that the particles (on the
average) move through the column more rapidly than in the absence of the
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force. Thus any property on which these colloidal forces depend could serve
as a basis for particle separation.

If colloidal forces affect the separation of particle mixtures in complex
columns, then the chromatogram of a monodisperse sol in a simple column
(where the hydrodynamics are known) should yield information about the
colloidal forces. In this paper the analysis of axial dispersion of an ensemble
of identical particles is performed in some simple limiting cases to see what
information about the particle/wall interaction can be gleaned from such
experiments. To increase the importance of the particle/wall interactions,
the particles are allowed to settle in a horizontal column before elution, If the
residence time of the particle is much longer than the time needed for a
particle to sample all accessible points in the cross-section by Brownian
motion, then the analysis below reveals that only two pieces of information
about the interaction potential profile can be obtained. But if the residence
time is so short that particles only have time to diffuse a distance over which
their potential energy change is much less than kT, then much of the potential
energy profile can be deduced from a single chromatogram.

AXIAL DISPERSION

As an initially uniform slug of solute moves with a carrier fluid through an
open capillary column, its shape becomes distorted. Solute molecules located
closer to the wall of the capillary move through the column more slowly than
solute molecules located on the centerline because the fluid velocity is
smaller at the wall than at the center. Besides axial convection, the solute
may also diffuse radially. Whether or not diffusion is important, a detector
monitoring the average concentration of solute in the effluent of the column
will indicate that the solute has spread over a volume of effluent which is
larger than that of the injected slug. This spreading is called axial
“dispersion.”

Taylor (6) analyzed the dispersion of molecular solutes in steady
Poiseuille flow through circular tubes by estimating a solution for the
unsteady concentration profile. Aris (7) showed that only the first two
moments of the residence-time distribution are needed so that a complete
solution is unnecessary; he also included axial diffusion in his analysis, Gill
and Sankarasubramanian (8) analyzed dispersion of molecular solutes when
the initial slug is not of uniform concentration or when the flow is
unsteady.

Dispersion of particles having colloidal size differs from dispersion of
small molecules in that particle/wall interactions may be important. In
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addition, particles near the wall do not have the same velocity as fluid
elements located the same distance from the wall as the particle’s center.
Furthermore, the diffusion coefficient of particles may depend on the
distance from the wall. Brenner and Gaydos (9) used the method of Aris (7)
to incorporate these effects in the analysis of dispersion of spherical particles
in Poiseuille flow through a circular tube in the limit where the residence time
is large compared to the time for a particle to sample all radial positions by
Brownian motion.

Below is an analysis of the dispersion of sedimented spherical particles in
steady Poiseuille flow between flat plates. The two contributions of this
paper to the literature on axial dispersion are (a) the interpretation of the
dispersion coefficient for long retention time in terms of particle/wall inter-
actions, and (b) the analysis of the asymptotic behavior for short retention
times. It is in the limit of very short retention time that the chromatogram
yields the most information on the particle/wall interaction.

GENERAL FORMULATION

Within a few radii of the wall, a particle is carried by the fluid at a velocity
which is somewhat less than the velocity of undisturbed fluid at the same
distance from the wall as the particle’s center. Goldman et al. (/0) deduced a
relation between these two velocities in the case of spherical particles in
linear shear flow. Similarly, a particle’s mobility and, consequently, its
diffusion coefficient become less than their bulk values when the particle is
near a wall, The amount of the reduction for motion perpendicular to the wall
was computed by Brenner (7).

In the analysis which follows, the concentration of particles is assumed to
be sufficiently dilute so that any interaction among particles can be ignored.
Neglecting axial diffusion, the concentration ¢(x, y, ¢) of identical Brownian
particles in Poiseuille flow between horizontal plates (see Fig. 1) must

satisfy

0 0 0 d 0

L [D<c L c)] (1)
ot ox dy kT dy oy

where v(y) is the speed of a particle induced by the axial flow, D(y) is the
diffusion coefficient of particles in the y-direction, and ¢(y) is the potential
energy of one particle owing to gravity and any interaction between the
particle and the plates. If the plates are impermeable to particles, then
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FiG. 1. The initial distribution of a slug held between two parallel plates. Before Poiseuille flow
of the carrier commences at ¢ = 0, the dispersed particles in the slug are allowed to settle under
the influence of gravity and particle/wall interactions until a Boltzmann distribution is

achieved.
d d
D( c_ 9 c>—»0 asy — a )
kT dy oy

and as y — d — a, where a is the radius of particles.

Particle/wall interactions play a secondary role in most chromatography
experiments because only a small fraction of particles is close enough to the
wall to experience any interaction. To make colloidal forces more apparent,
let the particles settle to the wall by gravity or some applied force before
starting the flow. Suppose a slug of length /, containing N particles per unit
width, is injected between the plates. In the absence of flow, the con-
centration profile satisfying (1) and (2) at steady state is a Boltzmann
distribution:

c= a(x)e *V) (3)
where
® = @(y)/kT
o forQ < x <!
olx) = {O forx<Oorx>1 4)
and

N/I

d—a
f e ®dy

0(0-
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If this distribution is achieved before the flow of carrier is started, then (3)
and (4) can serve as the initial condition for the analysis of subsequent
dispersion.

A detector located at the end of the column of length L might sense the
average particle concentration in the exit plane:

d—a
sw=4 [Tew v nay (5)

What information concerning the particle/wall interaction can be extracted
from this signal? Two limiting cases will be analyzed to obtain the answer.

CASE 1: FULLY-DEVELOPED TAYLOR DISPERSION

Suppose that the carrier flow rate is so slow that the time required for
convection to distort the slug is very long compared to the time for the
concentration profile to relax vertically to a Boltzmann distribution. Then the
profile in any x = constant plane is nearly a Boltzmann distribution at every
instant; in other words,

c=ye® (6)

where ¥ varies with position and time, but much more slowly with y than
-®
e,

The profile in any x = constant plane changes quite abruptly as the

distorted slug passes through the plane; so (dc/0f),, in Eq. (1) cannot be
neglected. However, the profile in a plane which moves downstream with a

speed
f v(y)e ) dy

v= ia (7)
f e e dy

will evolve much more slowly. Owing to the weak dependence of ¥ on y, this
speed is not exactly equal to the average speed of the slug, although it
represents a good approximation. The instantaneous position of this moving
plane is given by

x=¢+ut (8)

where £ is some constant. Using Egs. (6) and (8) to eliminate ¢ and x from
Eq. (1) obtains
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oy -0 _. 9Y Y 0 ( oy __¢>
+ (y — —— i
; e (v —v) e D e 9)

where 0y/0¢ is evaluated holding & and ¢ fixed. If the concentration profile on
an & = constant plane evolves slowly enough, the temporal derivative may be
neglected; furthermore, if ¢ is nearly independent of y, then so is 0Y/0&.
With these assumptions, Eq. (9) may be integrated twice with respect to y to
obtain the weak dependence on y:

2] Iy dy’
y= o+ y fy (y;y, (10)
oz Ve  D(y')e ®)
where
I(y') = f o) — Ble oY) dy (11)

and ¥ is an integration constant.
Let J(&, £) denote the rate of transport of particles across an £ = constant
plane per unit width:

d—a
JEf (v —v)cdy (12)
This differs from zero only because 7, defined by Eq. (7), is not equivalent to
[4% ve dy/ [47° ¢ dy. Substituting Egs. (6) and (10) into (12), taking dy/0&

as nearly constant, and using Eq. (7) to show that the contribution from
vanishes, yields

zﬂf"‘“ _ _fp(y}fy_iy_')iy’__
J ot J. [o(y) — 7]e . DOHe dy  (13)

Conservation of particles in the thin slice of fluid held between planes £

and £ + d¢& requires
0 d-a oJ
- ( f ¢ dy) = - (14)
ot a ¢ Q&

Substituting Eqs. (13) and (6) with ¢ nearly independent of p, Eq. (14)
becomes
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? P2
alf =7 ag‘f (15)

where

d_a ) I 14 d 14
_f [v(y) _ ;]e—d)(y)f} ___()QL'-dy
a a D(y')e—‘b(y)

d—a
f e ®dy

is called the “dispersion coefficient.” Interchanging the order of integration,

this expression becomes
fd-" P(y)dy
© _ D@)e®w

d—a
f e ®dy

from which it is clear that & = 0. Except for the obvious geometrical
differences, Eqs. (11) and (16) are identical to Eqgs. [3.50] of Brenner and
Gaydos (9), although a different method is employed.

If the length [ of the injected slug is sufficiently short, the slug may be
considered initially to be concentrated in the plane x = 0. Then the solution
of Eq. (15) is

I

9

©
ll

(16)

sieree ()
= = ay —

V= o P\ s
and the detector signal of Eq. (§) is

— 542
(L —vt) ] (17)

N
) =—F—= -
)= Saat P [ 49t
Interpretation of v and 2 in One Limiting Case

From the residence time corresponding to the peak of the chromatogram
and from the half-width of this peak, the values of v and & can be deduced.
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What information concerning the particle/wall interaction ¢(y) can be
gleaned from these values?

The general relationships between these parameters and the potential
profile are stated by Eqgs. (7) and (16). As a simple limiting case, suppose the
forces acting on the particles are such that at equilibrium the particle centers
all lie very near to a plane denoted as y =y,. This would occur if the
function ¢(y) is a negative spike concentrated at ¥y = y,, which causes e ®to
behave like a Dirac delta function. Then Eq. (7) reduces to

v =0(¥m) (18)

If the function #(y) is known, then the location y,, of the minimum in ¢(y) can
be deduced from the value of the average velocity.

From its definition by Eq. (11), (@) must be zero. With the help of Eq.
(7), I(d — @) must also vanish. Since e ® is very small everywhere except
near y =y,, I(y) is expected to display its extremum near y = y,. To
approximate I(y) near y = y,,, we shall substitute for v and P the first two
nonvanishing terms of their respective Taylor series:

V=0t V(Y — Yn) (19)
=, +5y(y ~ yu)? (20)

where v, = dv/dy evaluated aty = y,, and y = d*®/dy’ evaluated aty = y,,.
Equation (11) becomes

'

- )e“"’" exp [—"Y—(y—ym)z] (21)
Y 2

I(y)=—(

provided ¥ (@ — y,,)* 2 2. Finally D(y) in the numerator of Eq. (16) is a
gentle function compared to

’ 2
1%%( Um ) e ® (22)

which is a sharp spike concentrated at y = y,,, and so D(y) may be replaced
by D, the leading term of its Taylor-series expansion about y =y,.
Substituting D, and Eq. (22) in Eq. (16) obtains

9=(”'”‘>2 L (23)
Y b,
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With y,, known from Eq. (18), v,, and D,, can be calculated. Then Eq. (23)
allows vy to be deduced from the experimental value of the dispersion
coefficient.

In summary, the values of v and 2 deduced from the chromatogram can
be used to infer two pieces of information about the potential profile ®(y): the
location of its minimum y,, and the value of d*®/dy” at this location.

CASE 2: NEARLY NON-BROWNIAN DISPERSION

On the other hand, suppose that the carrier flow rate is so fast that upon
reaching the exit plane every particle is located at the same distance from the
wall as it was initially. In other words, insufficient time was allowed for
Brownian motion to occur. Analysis of this completely non-Brownian case
was also performed by Taylor (6). His result could easily be extended to
account for the nonuniform initial distribution given by Egs. (3) and (4) and
for the different velocity profile denoted by #(y). However, more quantitative
criteria as to when this result is applicable are not self-evident. To obtain
such criteria, a new analysis is presented below which estimates the
distortion of the signal owing to Brownian motion.

Introducing dimensionless variables:

X=x/L H=(y—a)/a
O=¢/kT C=c/a
V=v/U t=tU/L

Equations (1) through (4) become

oc  ,9C 3 [f(cdq>+ac>] "
P oX ' oH dH = oH (242)

subject to:

f<6C+cd¢> 0 H—0 R 24b
oOH dH as ’ (245)

and

C=4e™® a 1=0 (24c¢)
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where
A(X)_{l if 0<SX</UL ’s
0 if X<OorX>IL (25)
fUH) = D(y)/D.. (26)
A= LD./(Ua? (27)

where U is the average velocity of the carrier, D., is the bulk diffusion
coefficient of particles, and R is (d — 2a)/a.

In terms of the dimensionless variables, the limit of very small residence
time, L/U, corresponds to the limit A — 0. Thus a regular perturbation
expansion of the form

CX, H, 7y \) = c(X, H, ©) + Aey(X, H, ©) + Neoy(X, HyT) + - -+ (28)
is used to represent the asymptotic behavior of the solution to Eq. (24) in this
limit.

Substituting Eq. (28) into Eq. (24), then equating terms of order \°
yields

%oy 9 _y (29a)

or X a

f< %% 4 . -2 ) 0 H—-0.R (29b
oH 4m as ' )

o =A(X)e ®H a5 =90 (29¢)

Equating terms of order A! yields

? 2 d ®
Loy = [f<co—d~,—+ 0 )] (30a)

ot oX  oH dH OH
f( AZE dq)) 0 a H-OR (30b)
oH = O dH 2 ’
¢; =0 at t=0 (30¢)

Equation (29) describes the case of completely non-Brownian dispersion.
The solution is easily obtained by the method of characteristics:
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co(X, H, t) = A(n)e (31)
where
nX, H t)=X— tV(H) (32)

The solution of Eq. (30) represents the leading term of the distortion of the
profile caused by Brownian motion. Using Eqs. (31) and (32) to eliminate ¢,
and X from Eq. (30a) yields

(*EI_> = 2A(n) V' fe® — cA(n)[V'fe ) (33)
ot nH

where primes and dots denote derivatives with respect to H and 7,
respectively. If 4 is given by Eq. (25), with 7 substituted for X, then 4 and 4
are zero everywhere except at 7 =0 and n = [, where their values are not
defined. Of course, the ends of a real slug will be more diffuse so that these
singularities do not occur. Fortunately, the nature of these derivatives will
prove to be unimportant to the conclusion of this analysis.

After integrating Eq. (33) with respect to 7, holding n and H fixed (i.e.,
integration along a characteristic) and using Eq. (30c) as an initial condition,

-the function c; is obtained. Substituting the result together with Eq. (31) into

Eq. (28), truncating the series after the second term, and then substituting the
result into Eq. (5) obtains

ds(t)y _ [* A 9
0 =f {A(n)e““’— = AV ey
a, 0 2 0H

3

6

A'(n)V'zfe""’} dH

The quantity inside the square brackets is equivalent to

. f ( dcq dod )
A(MV'fe ™ ® = — ¢

(mV'fe ‘t oH 0 dH
when ¢, is given by Eq. (31). The integral of the 7* term in Eq. (34) equals
—IN? times the difference in this expression evaluated at H= R and at
H =0, both terms of this difference must identically vanish by Eq. (29b).
Integrating the 7° term by parts twice leaves
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ds(t) _ [ o M [y ]}
a0y -/;A(n){e“’— p [ o dH (35)

From Eq. (25), A(n) = 0 except for 0 < n < I/L, where n=1 — tV(H) in
the exit plane. Before the leading edge of the slug reaches the exit plane, this
integral will equal zero. After the trailing edge of the slug on the midplane
(y = d/2) has passed through the detector, there exist two intervals in H for
which 4(n) will be nonzero in the exit plane (see Fig. 2). For any given time,
let these intervals be denoted as H () < H < Hy(7) and Hiy(t) < H < Hy(7),
where the H,(7) are defined so that

tV(H,)=tV(H;) =1 (36a)
which corresponds to 7 =0, and
tV(H)=tV(H,)=1—-1Il/L (36b)

which corresponds to n = I/L. Since the particles were allowed to settle near
the lower plate before elution began, there are practically no particles in the
interval above the midplane. Substituting 4 =1 for H, < H< H, and
neglecting the contribution from the second interval, Eq. (35) becomes

ds(r) _ f”zm{ oM [(V’.fe“")' ]}
e, o 1 - =~ dH (37)

for ©> 1/max (V). The second term represents the distortion of the signal
owing to Brownian motion of the particles. To neglect this contribution, the
dimensionless residence time 7 must be sufficiently short so that

IAM[(V'fe™®) / V') | < 6e® (38)

Further, if the slug length / is made sufficiently short, the interval H, < H <
H, becomes so narrow that e”® can be considered constant over the interval.
More precisely, e ® can be treated as a constant if the second term in a
Taylor series expansion of this function is negligible compared to the first, or
if

de™® R
[ — ‘(Hz“H1)<<»e (39)
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F16. 2. Dispersion of a slug of non-Brownian particles owing to convection. (Vertical distances
have been greatly exaggerated with respect to horizontal distances.) The initial shape of the slug
is denoted by dashed lines, whereas the shape after ¢ seconds of flow is denoted by the shaded
region. The H; defined by Eq. (36) are related to the y; marked in this sketch by the expression
H;=(y;—a)a,fori=1,2,3,0r4.

For short slugs and short residence times, Eq. (37) becomes

ds(t)

adg

= [Hy(7) — Hy(7)] exp{—P[H,(7)]} (40)

Thus the total potential energy of a particle located a given distance from the
bottom plate may be deduced from the signal measured at a prescribed
time.

Physical Interpretation of Constraints

Near the bottom plate, where | ¢| is comparable to or larger than kT, e™®
can be expected to vary much more strongly with position than V’ or f.
Treating ¥’ and f as constants, Eq. (38) becomes
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( aod ) 2 do

dy dy’
In the usual models for colloidal forces | d*®/dy*| << (d®/dy)* except near
extrema. Neglecting the second derivative, Eq. (41) states that the distance
v/ Dt over which particles can be expected to diffuse during their residence in
the column must be short compared to the vertical displacement |dy/d®|
needed to change the potential energy of the particles by k7.

If V" varies slowly, then V(H,) — V(H,) = (H, — H,)V". Substituting Eq.
(36) and this approximation into Eq. (39) yields

Dt <6 (41)

1<K t)dv/d®D| (42)

where dv/d® is the ratio of dv/dy to d®/dy. Consider two particles located at
such distances from the wall that their respective potential energies differ by
kT. Because they reside in planes of different velocity, these particles begin
to separate at an axial speed approximately equal to |dv/d®|. Equation (42)
states that the slug length must be short compared to the axial distance
accrued between these two particles when they are eluted from the
column.
Approximating H, — H, as above, Eq. (40) becomes

le~®H2)
) = qp———— 43
() = aq dt doldy (43)
where H,(7) is given by Eq. (36).
DISCUSSION

Long Retention Time: FFF

Field-flow fractionation or FFF (2) is a class of techniques for separating
mixtures of colloids which closely resembles the situation analyzed above. A
short slug of particles is injected into Poiseuille flow of the carrier fluid held
between two large parallel plates (as in Fig. 1). While the particles are in the
column a force field (e.g., gravity) is applied perpendicular to the flow to
cause particles to migrate into the slower fluid near one of the plates. This
causes the average velocity of the particles to differ from the average velocity
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of the carrier. When the force felt by an individual particle depends upon
some property of the particle (e.g., mass or charge), then particles with
different values of the property will be carried through the column at different
average velocities—permitting their separation by this technique.

Two examples in this class which employ gravity as the force field are
“sedimentation FFF” (12) and “steric FFF” (13). In both, the retention
time is long enough for the predictions of Case 1 to be applicable. Indeed,
when injecting mixtures of particles, chromatograms are reported with
several peaks in which the general shape of each seems to conform to Eq.
(17). The two techniques differ mainly in the order of elution of particles
having different sizes. When all the particles are much smaller than 1 pm,
small particles are eluted before larger ones and the technique is called
sedimentation FFF. When all the particles are much larger than 1 um, the
opposite elution order is observed and the technique is called steric FFF.

Both behaviors can be predicted by Eq. (7). As an exercise, let’s assume
that gravity and hard-sphere steric exclusion are the only forces contributing
to ®(p). Then the potential profile is

o(y) =

{(y —a)/ L for  y=a (44)

for y<a
where

kT

\
I

(45)

4 3
—; T4 (ps — P)g

is the ratio of the particle’s thermal energy to the gravitational force it feels.
This profile is plotted as the solid lines in Fig. 3. Let’s further assume that the
axial velocity of a particle equals the axial velocity of fluid the same distance
from the wall as the particle’s center. Then

o(y)=6Uy/d (y K dJ2) (46)

where U is the average velocity of the carrier. Substituting (44) and (46) into
(7) obtains

Z~6 a+ L 47
” = (47)
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F1G. 3. The shape of the potential profile when only gravitational attraction and steric exclusion
act (solid line) or when these two forces plus double-layer repulsion act (dashed line).

for the “retention ratio” when .2 < d/2. Note that if the particles are small
enough so 2" >> a, then v o< _# o< g *, In this case smaller particles move
at a higher velocity than larger particles and will be eluted first (sedimenta-
tion FFF). On the other hand, for very large particles, . < a and (47)
predicts » = a. Then larger particles will be eluted first (steric FFF). For
p,—p=1g/cm’® at T =300 K, Eq. (45) predicts .2~ = a when 2a = 1.12
um, which is the correct order of magnitude for the particle size separating
the two techniques, This critical size is not sensitive to the particle density.
Thus Eq. (7) can be used to rationalize these two techniques, The
corresponding prediction of the dispersion coefficient

vt 4

2="12
Dd?

(48)

is obtained from Eq. (16) with D(y) taken as a constant. On this basis, we
predict 2 o< ¢!, which would make the half-widths of the chromatogram
peaks exquisitely sensitive to particle size—they are not.

Let’s modify the above analysis by adding double-layer repulsion to the
potential profile of Eq. (44):

Bexp(— y—a>+ r-a (y = a)
A Z

®(y) =
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akT ey, ey,
B=16¢ tanh tanh | —— (50)
e? 4kT AkT
ekT 172
A=|—"77 51
( 8mwzle’e > S

where € is the dielectric constant, ¢ is the concentration of a z-z electrolyte,
and ¢, are the Stern potentials of the particle and lower plate. {Use of the
electrostatic system of units is assumed in the form of these equations:
¢ = 78 for water, e = 4.803 X 107'° statcoul, y; expressed in statvolts (300
volts = 1 statvolt), ¢ expressed in ions/cm?, with all other symbols expressed
in the appropriate c.g.s. units.] This expression for the double-layer repulsion
is almost identical to one used by Verwey and Overbeek (I4) to determine
the critical coagulation concentration of an electrostatically stabilized
hydrosol, except it has been modified to account for the sphere-plane
geometry. The total potential profile is plotted as the dotted line in Fig, 3.
Equation (49) has a minimum at y =y,

Ym=a=+ Xn(B.Z\) (52)
a*d 1
Y= = (53)
ay* |, ZLA

As - 0 (large dense particles), e~® behaves like a delta function, having a
spike at y =y,,. Then we can approximate Eqs. (7) and (16) by Egs. (18)
and (23) which yield

=6 = a+Aln (54)
U d d A
U\ /7
9 =36—""7>— (55)
D,d

These assumptions are more likely to be valid in steric FFF than in
sedimentation FFF.

When a > X and .7, the second term in Eq. (54) can be neglected and the
retention ratio becomes the same as that predicted by ignoring double-layer
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repulsion. However, the dispersion coefficient is quite different. If
ym—a<Xa, then D, = (y, — a)D./a. This result was deduced from the
asymptotic form of the friction coefficient for a rigid sphere near to a plane
wall (11). Substituting this expression and y,, from Eq. (52) into Eq. (55)
yields

, - 36UaAL? 56)
In (B.Z/\)D..d*

where D., is the diffusion coefficient of particles evaluated far from any wall.
Owing to the dependence upon A, Eq. (56) predicts that the dispersion
coefficient should decrease with the concentration of salt in the carrier.
Equation (56) also predicts a dispersion coefficient which is less sensitive to
particle size than Eq. (48), but still more sensitive than that observed. For
example, the chromatogram of Caldwell et al. (15) displays almost no
dependence of peak width on particle size for silica beads of 5-10 um.
However, Eq. (56) applies to dispersion of an ensemble of idential particles.
Perhaps the peak width of real samples is more a measure of the variance in
size of particles composing the sample than of the dispersion coefficient of
particles having the mean size.

Besides analyzing particle mixtures, this type of experiment can be used to
probe colloidal forces. Suppose that an ensemble of identical particles is
injected, allowed to settle, and eluted. From the residence time and half-
width of the peak, two pieces of information about the potential profile can be
deduced: y,, and d*¢/dy* at y = y,,. In principle, the entire potential profile
could be determined through a series of experiments in which the applied
force is varied by adding an adjustable centripetal field. Increasing the
applied force can be expected to shift y,, closer to a, thus allowing d>¢/dy? to
be determined at different y. When the applied force is spatially uniform, it
does not contribute to d*¢/dy?, so that integrating d’¢/dy?* as a function of
V. Vields the profile of the net colloidal force.

Short Retention Time

By contrast, the opposite extreme of very short residence time seems to
afford a major advantage for the determination of the potential profile. In
particular, Eq. (43) suggests that the entire profile can be deduced from a
single chromatogram.

Of particular concern is whether the particles can be eluted fast enough so
they do not have time to diffuse that very short vertical distance over which
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their potential energy changes appreciably. The closer to the wall a particle
is, the longer its residence time ¢ will be and the stronger the colloidal force
{dgp/dy)] it feels; thus the closer to the wall a particle is, the more difficult it is
to satisfy Eq. (41).

How close to the wall could such an experiment probe the particle/wall
interactions? To obtain a rough estimate of the answer, consider a parallel
plate column whose dimensions are d X WXL =0.1 cm X5 em X 250
cm. Near the bottom plate the particles’ velocity, owing to Poiseuille flow,
can be approximated by Eq. (46) that the residence time of particles is
t ~ Ld/(6 Ua). To minimize this residence time, the flow rate is chosen as the
largest value which permits laminar flow (pUd/p < 1000) and which
corresponds to a residence time that is much larger than the relaxation time
needed to establish steady Poiseuille flow [say Ld/6Ua) = 100 pd?/u]. For
large particles (a = 4 um) in this particular column, the relaxation time
provides the tighter constraint; the largest allowable flow rate corresponds
to

U=4pu/pa (57)

where u and p are the fluid’s viscosity and density. Substituting these values
together with D = kT/(6mua) and T= 300 K into Eq. (41), and neglecting
d*®/dy?, yields

I

u’a

L2 (37X 107 g-cm?/s?) (58)

where .2 = |dy/d®|. To have less than 10% distortion in the signal caused
by Brownian motion of 10 um particles in water, Eq. (58) requires .= 1.9
um. According to the definition of .Z the signal can be interpreted using Eq.
(40) up to the instant at which particles are eluted from that position next to
the wall where the local force on the particle equals k7/ 2 or 2.1 X 10710
dyn.

A less precise but more useful interpretation of .2 is the displacement
needed to change the potential energy by k7. To measure the most
interesting part of the potential profile, the minimum allowable .#” should be
smaller than the range of the force. Then the .#”of 1.9 um in the above
example would not be adequate to measure the double-layer force, whose
range is always less than 1 um in water,

One way to decrease . is to use a more viscous fluid. In addition, the
molecules composing most other fluids do not dissociate into ions like water
does, so that lower ion concentrations, and therefore a longer range for the
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double-layer force, can be obtained. Using u=10 g/cm-s, Eq. (58) is
satisfied for .7 = 0.0019 pm, which is small enough to allow measurement
of double-layer forces. Actually, Eq. (58) gives a conservative estimate
of # since it does not consider that a particle’s diffusion coefficient D may
be orders of magnitude smaller than the bulk value D. when it is near the
wall (a lower diffusion coefficient yields a lower _2).

With this same set of approximations, constraint (42) becomes | < #L/
a= 2.5 X 10° _Z Substituting the smaller .# found above, this corresponds
to an injection of dW1 < 25 uL. Such small injections are not unusual in
ligquid chromatography. Thus Eq. (42) is not a severe constraint.

Other sources of error include additional dispersion of the slug owing to
shear-induced collisions or to a distribution in the size of particles. Shear-
induced collisions may deflect particles off their original streamline by as
much as one diameter. Since the frequency of such collisions is proportional
to the square of particle concentration, their effect can be minimized by
injecting fewer particles, provided the detector is sensitive enough. A varia-
tion in size of the injected particles can also contribute to dispersion since the
most probable velocity of any particle depends on its size [recall v(a) =
6 Ua/d]. To neglect this effect, the standard deviation in particle size should be
smaller than the desired spatial resolution of (y). In practice, this may
require further refinement of available standards, Surface roughness in the
bottom plate will also have to be small compared to the spatial resolution
desired for measuring ¢(p). This might be achieved by lining the bottom wall
with a sheet of molecularly-smooth mica. Finally, Caldwell et al. (I5)
observe a flow-rate dependent “lift” force which appears to act on low-
density particles during steric FFF. This might be a minifestation of inertial
migration of particles across streamlines which has been the subject of many
other studies (16, 17). If this force is inertial in origin, then it can be made
negligible by keeping the flow rate small, although this might make it
impossible to meet the requirement of short retention time.

Instead of using a chromatography column and detector to measure the
residence-time distribution of an ensemble of particles, one could directly
observe under a microscope the distribution of velocities assumed by a single
sphere at different instants as it is translated horizontally by linear shear flow
near a flat plate. This experiment would provide much greater flexibility in
meeting the constraints imposed by the mathematical analysis and would
completely avoid the ambiguities arising from the standard deviation in
properties of an ensemble. We are currently attempting such an experiment
with a single sphere.

If successful, such an experiment would provide the first measurement of
the potential profile between a colloidal particle and a plate. The result could



13: 37 25 January 2011

Downl oaded At:

AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1607

be compared with theoretical predictions of the double-layer and van der
Waals interactions. Even if only very long-range forces could be probed, this
experiment may provide a valuable new tool for the study of colloids.
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