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Axial Dispersion of Sedimented Colloids 

DENNIS C. PRIEVE 
DEPARTMENT OF CHEMICAL ENGINEERING 
CARNEGIE-MELLON UNIVERSITY 
PITTSBURGH, PENNSYLVANIA 15213 

Abstract 

After an ensemble of identical particles has had time to settle along the y-axis to 
their equilibrium distribution in a field of potential energy q5h) by gravity, but 
prevented from adsorbing by double-layer repulsion, their dispersion by Poiseuille 
flow between two horizontal plates is predicted. The residence-time distribution of 
particles is obtained in terms of @(j). For chromatographic peaks with long retention 
times, equations are obtained relating the elution volume and dispersion coefficient to 
N y ) .  From such data, two pieces of information regarding H y )  can be deduced the 
location of the minimum, y,, and q5”(ym). However, at the opposite extreme of very 
short retention times, a major portion of the profile H y )  can be deduced from a single 
chromatogram. Such an experiment might provide the first measurement of long- 
range forces between a colloid particle and a flat plate. 

Several variants of liquid-exclusion chromatography (1-4) have been 
proposed or developed for analyzing mixtures of colloids. Two of these- 
“ field-flow fractionation” (2) and “hydrodynamic chromatography” ( I ) -  have 
been extensively studied. While particle size can be the basis of separation in 
all of these techniques, some techniques also show sensitivity to other 
particle properties such as the density, charge, or dielectric constant. In the 
case of hydrodynamic chromatography (I), the double-layer and van der 
Waals interactions between the particle and the stationary phase signifi- 
cantly alter the elution volume ( I ,  5). A simple explanation is that double- 
layer repulsion, for example, pushes particles away from the stationary phase 
and out into a region of higher carrier velocity so that the particles (on the 
average) move through the column more rapidly than in the absence of the 
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1588 PRIEVE 

force. Thus any property on which these colloidal forces depend could serve 
as a basis for particle separation. 

If colloidal forces affect the separation of particle mixtures in complex 
columns, then the chromatogram of a monodisperse sol in a simple column 
(where the hydrodynamics are known) should yield information about the 
colloidal forces. In this paper the analysis of axial dispersion of an ensemble 
of identical particles is performed in some simple limiting cases to see what 
information about the particle/wall interaction can be gleaned from such 
experiments. To increase the importance of the particle/wall interactions, 
the particles are allowed to settle in a horizontal column before elution. If the 
residence time of the particle is much longer than the time needed for a 
particle to sample all accessible points in the cross-section by Brownian 
motion, then the analysis below reveals that only two pieces of information 
about the interaction potential profile can be obtained. But if the residence 
time is so short that particles only have time to diffuse a distance over which 
their potential energy change is much less than kT, then much of the potential 
energy profile can be deduced from a single chromatogram. 

AXIAL DISPERSION 

As an initially uniform slug of solute moves with a carrier fluid through an 
open capillary column, its shape becomes distorted. Solute molecules located 
closer to the wall of the capillary move through the column more slowly than 
solute molecules located on the centerline because the fluid velocity is 
smaller at the wall than at the center. Besides axial convection, the solute 
may also diffuse radially. Whether or not diffusion is important, a detector 
monitoring the average concentration of solute in  the eMuent of the column 
will indicate that the solute has spread over a volume of effluent which is 
larger than that of the injected slug. This spreading is called axial 
“dispersion.” 

Taylor (6) analyzed the dispersion of molecular solutes in steady 
Poiseuille flow through circular tubes by est:imating a solution for the 
unsteady concentration profile. Aris (7) showed that only the first two 
moments of the residence-time distribution are needed so that a complete 
solution is unnecessary; he also included axial diffusion in his analysis. Gill 
and Sankarasubramanian (8) analyzed dispersion of molecular solutes when 
the initial slug is not of uniform concentration or when the flow is 
unsteady. 

Dispersion of particles having colloidal size differs from dispersion of 
small molecules in that particle/wall interactions may be important. In 
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AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1589 

addition, particles near the wall do not have the same velocity as fluid 
elements located the same distance from the wall as the particle’s center. 
Furthermore, the diffusion coefficient of particles may depend on the 
distance from the wall. Brenner and Gaydos (9) used the method of Aris (7) 
to incorporate these effects in the analysis of dispersion of spherical particles 
in Poiseuille flow through a circular tube in the limit where the residence time 
is large compared to the time for a particle to sample all radial positions by 
Brownian motion. 

Below is an analysis of the dispersion of sedimented spherical particles in 
steady Poiseuille flow between flat plates. The two contributions of this 
paper to the literature on axial dispersion are (a) the interpretation of the 
dispersion coefficient for long retention time in terms of particle/wall inter- 
actions, and (b) the analysis of the asymptotic behavior for short retention 
times. It is in the limit of very short retention time that the chromatogram 
yields the most information on the particle/wall interaction. 

GENERAL FORMULATION 

Within a few radii of the wall, a particle is carried by the fluid at a velocity 
which is somewhat less than the velocity of undisturbed fluid at the same 
distance from the wall as the particle’s center. Goldman et al. (10) deduced a 
relation between these two velocities in the case of spherical particles in 
linear shear flow. Similarly, a particle’s mobility and, consequently, its 
diffusion coefficient become less than their bulk values when the particle is 
near a wall. The amount of the reduction for motion perpendicular to the wall 
was computed by Brenner (11). 

In the analysis which follows, the concentration of particles is assumed to 
be sufficiently dilute so that any interaction among particles can be ignored. 
Neglecting axial diffusion, the concentration c(x, y, t )  of identical Brownian 
particles in Poiseuille flow between horizontal plates (see Fig. 1) must 
satisfy 

- + u -  ac ac = - [ D ( - $ - d y + * ) ]  a d@ (1) 

at ax dY dY 

where u(y)  is the speed of a particle induced by the axial flow, D(y)  is the 
diffusion coefficient of particles in the y-direction, and @(y) is the potential 
energy of one particle owing to gravity and any interaction between the 
particle and the plates. If the plates are impermeable to particles, then 
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1590 PRIEVE 

FIG. 1 .  The initial distribution of a slug held between two parallel plates. Before Poiseuille flow 
of the carrier commences at t = 0, the dispersed particles in the slug are allowed to settle under 
the influence of gravity and particle/wall interactions until a Boltzmann distribution is 

achieved. 

and as y - d - a ,  where a is the radius of particles. 
Particle/wall interactions play a secondary role in most chromatography 

experiments because only a small fraction of particles is close enough to the 
wall to experience any interaction. To make colloidal forces more apparent, 
let the particles settle to the wall by gravity O K  some applied force before 
starting the flow. Suppose a slug of length I, containing N particles per unit 
width, is injected between the plates. In the absence of flow, the con- 
centration profile satisfying ( 1 )  and (2) at steady state is a Boltzmann 
distribution: 

where 

@ = @ ( y ) / k T  

for x < 0 o r x  > I a(x)  = 

and 

(4)  
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AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1591 

If this distribution is achieved before the flow of carrier is started, then (3) 
and (4) can serve as the initial condition for the analysis of subsequent 
dispersion. 

A detector located at the end of the column of length L might sense the 
average particle concentration in the exit plane: 

What information concerning the particle/wall interaction can be extracted 
from this signal? Two limiting cases will be analyzed to obtain the answer. 

CASE 1 : FULLY-DEVELOPED TAYLOR DISPERSION 

Suppose that the carrier flow rate is so slow that the time required for 
convection to distort the slug is very long compared to the time for the 
concentration profile to relax vertically to a Boltzmann distribution. Then the 
profile in any x = constant plane is nearly a Boltzmann distribution at every 
instant; in other words, 

where + varies with position and time, but much more slowly with y than 
e-'. 

The profile in any x = constant plane changes quite abruptly as the 
distorted slug passes through the plane; so (d~ldt ) .~ , , ,  in Eq. (1) cannot be 
neglected. However, the profile in a plane which moves downstream with a 
speed 

Jpa v(y)e-Q(Y) dy  
(7)  

- 
V E  

e-@(Y) dy Ld-a 
will evolve much more slowly. Owing to the weak dependence of + on y ,  this 
speed is not exactly equal to the average speed of the slug, although it 
represents a good approximation. The instantaneous position of this moving 
plane is given by 

where < is some constant. Using Eqs. (6) and (8) to eliminate c and x from 
Eq. (1) obtains 
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1592 PRIEVE 

where d$/d t  is evaluated holding < and t fixed. If the concentration profile on 
an < = constant plane evolves slowly enough, the temporal derivative may be 
neglected; furthermore, if $ is nearly independent of y, then so is d$/.la<. 
With these assumptions, Eq. (9) may be integrated twice with respect toy to 
obtain the weak dependence on y :  

where 

I ( y ’ )  J 6 ” ’ [ u ( ~ t t )  - c]e-@’Y‘‘) dy” 

J- L d - ’ ( u  - V ) c  dj )  

( 1  1 )  

and q0 is an integration constant. 

plane per unit width: 
Let J(<, t )  denote the rate of transport of partides across an <= constant 

(12) 

This differs from zero only because V ,  defined by Eq. (7), is not equivalent to 
Jg-’ uc dy/J’:-“ c dy. Substituting Eqs. (6) and ( 10) into (12), taking d+/.lag 
as nearly constant, and using Eq. (7) to show that the contribution from t+b0 

vanishes, yields 

Conservation of particles in the thin slice of fluid held between planes < 
and < + d< requires 

Substituting Eqs. (1 3 )  and (6) with I) nearly independent of y ,  Eq. (14) 
becomes 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
3
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1593 

(15)  

where 

dY r r(y')dy' 
- J d - ' [ v ( y )  - ~ l e - @ ( ~ )  

D( y w ' j  
g =  

L d - " e - @  dy 

is called the "dispersion coefficient." Interchanging the order of integration, 
this expression becomes 

J a  

from which it is clear that 9 L 0. Except for the obvious geometrical 
differences, Eqs. (1 1 )  and (16) are identical to Eqs. [3.50] of Brenner and 
Gaydos (9), although a different method is employed. 

If the length 1 of the injected slug is sufficiently short, the slug may be 
considered initially to be concentrated in the plane x = 0. Then the solution 
of Eq. (15) is 

and the detector signal of Eq. ( 5 )  is 

Interpretation of 7 and 9 in One Limiting Case 

From the residence time corresponding to the peak of the chromatogram 
and from the half-width of this peak, the values of V and 9 can be deduced. 
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1594 PRIEVE 

What information concerning the particle/wall interaction #(y) can be 
gleaned from these values? 

The general relationships between these parameters and the potential 
profile are stated by Eqs. (7) and (16). As a simple limiting case, suppose the 
forces acting on the particles are such that at equilibrium the particle centers 
all lie very near to a plane denoted as y =y,. This would occur if the 
function @(y) is a negative spike concentrated at y = y ,  which causes e-@ to 
behave like a Dirac delta function. Then Eq. (7)  reduces to 

If the function v(y )  is known, then the location y m  of the minimum in @(y) can 
be deduced from the value of the average velocity. 

From its definition by Eq. (1 l), I(a)  must be zero. With the help of Eq. 
(7), I(d - a)  must also vanish. Since e-@ is very small everywhere except 
near y = y m ,  I@) is expected to display its extremum near y = y m .  To 
approximate I ( y )  near y = y,, we shall substitute for v and 0 the first two 
nonvanishing terms of their respective Taylor series: 

v = Urn + V X Y  - Y,) (19)  

(20) 1 

where vh = dv/dy evaluated at y = ym and y = d2Wdy2 evaluated at y = y,. 
Equation (1 1 ) becomes 

= a m  + ~ Y ( Y  - Y m b 2  

provided 4 ( a  - Y , ) ~  
gentle function compared to 

2. Finally D(y) in the numerator of Eq. (16) is a 

which is a sharp spike concentrated at y = y,, and so D(y) may be replaced 
by D,, the leading term of its Taylor-series expansion about y = y m .  
Substituting D, and Eq. (22) in Eq. (16) obtains 
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AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1595 

With y, known from Eq. ( 18), ul, and D,  can be calculated. Then Eq. (23) 
allows y to be deduced from the experimental value of the dispersion 
coefficient. 

In summary, the values of V and 9 deduced from the chromatogram can 
be used to infer two pieces of information about the potential profile @Q): the 
location of its minimum y, and the value of dz@ldy2 at this location. 

CASE 2: NEARLY NON-BROWNIAN DISPERSION 

On the other hand, suppose that the carrier flow rate is so fast that upon 
reaching the exit plane every particle is located at the same distance from the 
wall as it was initially. In other words, insuffcient time was allowed for 
Brownian motion to occur. Analysis of this completely non-Brownian case 
was also performed by Taylor (6). His result could easily be extended to 
account for the nonuniform initial distribution given by Eqs. ( 3 )  and (4) and 
for the different velocity profile denoted by uo). However, more quantitative 
criteria as to when this result is applicable are not self-evident. To obtain 
such criteria, a new analysis is presented below which estimates the 
distortion of the signal owing to Brownian motion. 

Introducing dimensionless variables: 

Equations ( 1 )  through (4) become 

ac + V - = A - [ f ( C - + z ) ]  ac a d@ (24a)  
ds  dX d H  d H  dH 

subject to: 

and 
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where 

PRIEVE 

1 if O S X S I / L  

0 if X < O o r X > I / L  
A ( X )  = 

(27)  X = L D J (  Ua’) 

where U is the average velocity of the carrier, D, is the bulk diffusion 
coefficient of particles, and R is (d  - 2a)/a. 

In terms of the dimensionless variables, the limit of very small residence 
time, LKJ, corresponds to the limit X - 0. Thus a regular perturbation 
expansion of the form 

C(X, H,  z; A) = c0(X, H, r )  4- Xc,(X, H, z) + X’c2(X, ri, z) + * * (28) 

is used to represent the asymptotic behavior of the solution to Eq. (24) in this 
limit. 

Substituting Eq. (28) into Eq. (24), then equating terms of order Xo 
yields 

Equating terms of order Xi yields 

d@ + f7-- acl - - d C l  

ar ax aH dH’ aH 
[ f ( c g  ~- + ”) ] (30a)  

c 1 = 0  at z = O  

Equation (29) describes the case of completely non-Brownian dispersion. 
The solution is easily obtained by the method of characteristics: 
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AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1597 

where 

The solution of Eq. (30) represents the leading term of the distortion of the 
profile caused by Brownian motion. Using Eqs. ( 3  1) and (32) to eliminate co 
and X from Eq. (30a) yields 

where primes and dots denote derivatives with respect to H and q, 
respectively. If A is given by Eq. (25), with q substituted for X ,  then A and A 
are zero everywhere except at q = 0 and q = I, where their values are not 
defined. Of course, the ends of a real slug will be more diffuse so that these 
singularities do not occur. Fortunately, the nature of these derivatives will 
prove to be unimportant to the conclusion of this analysis. 

After integrating Eq. (33) with respect to z, holding q and H fixed (i.e., 
integration along a characteristic) and using Eq. (30c) as an initial condition, 
the function c1 is obtained. Substituting the result together with Eq. (31) into 
Eq. (28), truncating the series after the second term, and then substituting the 
result into Eq. (5) obtains 

The quantity inside the square brackets is equivalent to 

when co is given by Eq. (31). The integral of the z? term in Eq. (34) equals 
-fAz? times the difference in this expression evaluated at H =  R and at 
H = 0; both terms of this difference must identically vanish by Eq. (29b). 
Integrating the 23 term by parts twice leaves 
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1598 PRIEVE 

From Eq. (25), A ( q )  = 0 except for 0 I q 5 UL, where q = 1 - zV(H) in 
the exit plane. Before the leading edge of the slug reaches the exit plane, this 
integral will equal zero. After the trailing edge of the slug on the midplane 
(j = d /2 )  has passed through the detector, there exist two intervals in H for 
which A( q) will be nonzero in the exit plane (see Fig. 2). For any given time, 
let these intervals be denoted as H,(r) I H 5 El2(;:) and H3(z) I H 5 H4(z),  
where the Hi(z) are defined so that 

which corresponds to q = 0, and 

which corresponds to q = Z/L. Since the particles were allowed to settle near 
the lower plate before elution began, there are practically no particles in the 
interval above the midplane. Substituting A = 1 for HI 5 H I  H2 and 
neglecting the contribution from the second interval, Eq. (35) becomes 

for z> l/max (V). The second term represents the distortion of the signal 
owing to Brownian motion of the particles. To neglect this contribution, the 
dimensionless residence time z must be sufficiently short so that 

Further, if the slug length I is made sufficiently short, the interval H2 5 H I  
HI becomes so narrow that e-' can be considered constant over the interval. 
More precisely, e-'@ can be treated as a constant if the second term in a 
Taylor series expansion of this function is negligible compared to the first, or 
if 
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Y 

7 

I y4 

P 
-I I 

I 

2 
FIG. 2. Dispersion of a slug of non-Brownian particles owing to convection. (Vertical distances 
have been greatly exaggerated with respect to horizontal distances.) The initial shape of the slug 
is denoted by dashed lines, whereas the shape after t seconds of flow is denoted by the shaded 
region. The Hi defined by Eq. (36) are related to the yi marked in this sketch by the expression 

Hi = (yi - a)/a,  for i = 1, 2, 3, or 4. 

For short slugs and short residence times, Eq. (37) becomes 

Thus the total potential energy of a particle located a given distance from the 
bottom plate may be deduced from the signal measured at a prescribed 
time. 

Physical Interpretation of Constraints 

Near the bottom plate, where 1 q51 is comparable to or larger than kT, e-@ 
can be expected to vary much more strongly with position than V' or$  
Treating V' andfas constants, Eq. (38) becomes 
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In the usual models for colloidal forces 1 d2@/d$ 1 << (d@/dy)' except near 
extrema. Neglecting the second derivative, Eq. (4 1) states that the distance 
@over which particles can be expected to diffuse during their residence in 
the column must be short compared to the vertical displacement 1 dy/d@ 1 
needed to change the potential energy of the particles by kT. 

If I' vanes slowly, then V(H2) - V(H,) = (H2 - H,)V'. Substituting Eq. 
(36) and this approximation into Eq. (39) yields 

where dv/d@ is the ratio of dvldy to d@/dy. Consider two particles located at 
such distances from the wall that their respective potential energies differ by 
kT. Because they reside in planes of different vebocity, these particles begin 
to separate at an axial speed approximately equal to 1 dvld@ 1 . Equation (42) 
states that the slug length must be short compared to the axial distance 
accrued between these two particles when they are eluted from the 
column. 

Approximating H2 - H I  as above, Eq. (40) becomes 

where H2(z) is given by Eq. (36). 

DISCUSSION 

Long Retention Time: FFF 

Field-flow fractionation or FFF (2) is a class of techniques for separating 
mixtures of colloids which closely resembles the situation analyzed above. A 
short slug of particles is injected into Poiseuille flow of the carrier fluid held 
between two large parallel plates (as in Fig. 1). While the particles are in the 
column a force field (e.g., gravity) is applied perpendicular to the flow to 
cause particles to migrate into the slower fluid near one of the plates. This 
causes the average velocity of the particles to differ from the average velocity 
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AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1601 

of the carrier. When the force felt by an individual particle depends upon 
some property of the particle (e.g., mass or charge), then particles with 
different values of the property will be carried through the column at different 
average velocities-permitting their separation by this technique. 

Two examples in this class which employ gravity as the force field are 
“sedimentation FFF” (12) and “steric FFF” (13). In both, the retention 
time is long enough for the predictions of Case 1 to be applicable. Indeed, 
when injecting mixtures of particles, chromatograms are reported with 
several peaks in which the general shape of each seems to conform to Eq. 
(1 7). The two techniques differ mainly in the order of elution of particles 
having different sizes. When all the particles are much smaller than 1 pm, 
small particles are eluted before larger ones and the technique is called 
sedimentation FFF. When all the particles are much larger than 1 ,urn, the 
opposite elution order is observed and the technique is called steric FFF. 

Both behaviors can be predicted by Eq. (7). As an exercise, let’s assume 
that gravity and hard-sphere steric exclusion are the only forces contributing 
to <D(y). Then the potential profile is 

where 

is the ratio of the particle’s thermal energy to the gravitational force it feels. 
This profile is plotted as the solid lines in Fig. 3. Let’s further assume that the 
axial velocity of a particle equals the axial velocity of fluid the same distance 
from the wall as the particle’s center. Then 

where Uis the average velocity of the carrier. Substituting (44) and (46) into 
(7) obtains 
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0 

Q Ym Y 

FIG. 3.  The shape of the potential profile when only gravitational attraction and steric exclusion 
act (solid line) or when these two forces plus double-layer repulsion act (dashed line). 

for the “retention ratio” when 2 << d/2 .  Note that if the particles are small 
enough so .J >> a, then V 0~ 2 a-3. In this case smaller particles move 
at a higher velocity than larger particles and will be eluted first (sedimenta- 
tion FFF). On the other hand, for very large particles, - /<<a  and ( 4 7 )  
predicts V cc a. Then Zarger particles will be eluted first (steric FFF). For 
ps - p = 1 g/cm3 at T = 300 K, Eq. ( 4 5 )  predicts 2 = a when 2a = 1.12 
,am, which is the correct order of magnitude for the particle size separating 
the two techniques. This critical size is not sensiitive tu the particle density. 
Thus Eq. (7) can be used to rationalize these two techniques. The 
corresponding prediction of the dispersion coefficient 

u2 d4 
D d 2  

. 9 = 7 2 -  

is obtained from Eq. (16) with D(y)  taken as a constant. On this basis, we 
predict 9 0~ a-”, which would make the half-widths of the chromatogram 
peaks exquisitely sensitive to particle size-they are not. 

Let’s modify the above analysis by adding doluble-layer repulsion to the 
potential profile of Eq. (44): 
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AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1603 

tanh (*) tanh (*) (50) 
a k T  

e2 
B =  1 6 ~ -  

where E is the dielectric constant, c is the concentration of a z-z ~lectrolyte, 
and I); are the Stem potentials of the particle and lower plate. [Use of the 
electrostatic system of units is assumed in the form of these equations: 
E = 78 for water, e = 4.803 X lo-'' statcoul, $i expressed in statvolts (300 
volts = 1 statvolt), c expressed in ions/cm3, with all other symbols expressed 
in the appropriate c.g.s. units. J This expression for the double-layer repulsion 
is almost identical to one used by Verwey and Overbeek (14)  to determine 
the critical coagulation concentration of an electrostatically stabilized 
hydrosol, except it has been modified to account for the sphere-plane 
geometry. The total potential profile is plotted as the dotted line in Fig. 3. 
Equation (49) has a minimum at y = ym: 

y m  = a + X In ( B d / X )  ( 5 2 )  

1 YE- d2a I =- (53 )  

As 24 0 (large dense particles), e-' behaves like a delta function, having a 
spike at y = ym. Then we can approximate Eqs. (7) and (16) by Eqs. (18) 
and (23) which yield 

B d  
- 
2, Y m  -- - 6- = 

[ a  + X In (y) ] (54) U d d 

U2X2 d 2  
Dmd2 

9 = 3 6  ( 5 5 )  

These assumptions are more likely to be valid in steric FFF than in 
sedimentation FFF. 

When a >> X and 1, the second term in Eq. (54) can be neglected and the 
retention ratio becomes the same as that predicted by ignoring double-layer 
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1604 PRIEVE 

repulsion. However, the dispersion coefficient is quite different. If 
y ,  - a << a, then D, x ('y, - a)D,/a. This result was deduced from the 
asymptotic form of the friction coefficient for a rigid sphere near to a plane 
wall (11). Substituting this expression and ym from Eq. (52) into Eq. ( 5 5 )  
yields 

- 36 U 2 a X y 2  
In ( B  2/X)D,d2 

9 =  

where D, is the diffusion coefficient of particles evaluated far from any wall. 
Owing to the dependence upon A, Eq. (56 )  predicts that the dispersion 
coefficient should decrease with the concentration of salt in the carrier. 
Equation (56) also predicts a dispersion coefficient which is less sensitive to 
particle size than Eq. (48), but still more sensitive than that observed. For 
example, the chromatogram of Caldwell et al. (15) displays almost no 
dependence of peak width on particle size for silica beads of 5-10 p. 
However, Eq. (56) applies to dispersion of an ensemble of idential particles. 
Perhaps the peak width of real samples is more a measure of the variance in 
size of particles composing the sample than of the dispersion coefficient of 
particles having the mean size. 

Besides analyzing particle mixtures, this type of experiment can be used to 
probe colloidal forces. Suppose that an ensemble of identical particles is 
injected, allowed to settle, and eluted. From the residence time and half- 
width of the peak, two pieces of information about the potential profile can be 
deduced ym and d2@/dy2 at y = ym. In principle, the entire potential profile 
could be determined through a series of experilments in which the applied 
force is varied by adding an adjustable centripetal field. Increasing the 
applied force can be expected to shifty, closer to a, thus allowing d2@/dy2 to 
be determined at different y .  When the applied force is spatially uniform, it 
does not contribute to dz@/dy2, so that integrating d2@/dy2 as a function of 
ym yields the profile of the net colloidal force. 

Short Retention Time 

By contrast, the opposite extreme of very short residence time seems to 
afford a major advantage for the determination of the potential profile. In 
particular, Eq. (43) suggests that the entire profile can be deduced from a 
single chromatogram. 

Of particular concern is whether the particles can be eluted fast enough so 
they do not have time to diffuse that very short vertical distance over which 
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AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1605 

their potential energy changes appreciably. The closer to the wall a particle 
is, the longer its residence time t will be and the stronger the colloidal force 

1 d@/dy I it feels; thus the closer to the wall a particle is, the more difficult it is 
to satisfy Eq. (41). 

How close to the wall could such an experiment probe the particle/wall 
interactions? To obtain a rough estimate of the answer, consider a parallel 
plate column whose dimensions are d X W X  L = 0.1 cm X 5 cm X 250 
cm. Near the bottom plate the particles' velocity, owing to Poiseuille flow, 
can be approximated by Eq. (46) that the residence time of particles is 
t = Ld/(6Ua). To minimize this residence time, the flow rate is chosen as the 
largest value which permits laminar flow ( p U d p 5  1000) and which 
corresponds to a residence time that is much larger than the relaxation time 
needed to establish steady Poiseuille flow [say Ld/(6Ua) 2 100 p&/p]. For 
large particles ( a  2 4 pm) in this particular column, the relaxation time 
provides the tighter constraint; the largest allowable flow rate corresponds 
to 

U = 4p /pa  (57)  

where p and p are the fluid's viscosity and density. Substituting these values 
together with D = kT/(67rp) and T= 300 K into Eq. (41), and neglecting 
d2Qj/dy2, yields 

where 2 = I dy/dQ, I . To have less than 10% distortion in the signal caused 
by Brownian motion of 10 pm particles in water, Eq. (58) requires 2 2  1.9 
pm. According to the definition of 4 the signal can be interpreted using Eq. 
(40) up to the instant at which particles are eluted from that position next to 
the wall where the local force on the particle equals kT/ - fo r  2.1 X lo-'' 
dyn . 

A less precise but more useful interpretation of 2 is the displacement 
needed to change the potential energy by kT. To measure the most 
interesting part of the potential profile, the minimum allowable -8 should be 
smaller than the range of the force. Then the 2 of 1.9 pm in the above 
example would not be adequate to measure the double-layer force, whose 
range is always less than 1 pm in water. 

One way to decrease 2 i s  to use a more viscous fluid. In addition, the 
molecules composing most other fluids do not dissociate into ions like water 
does, so that lower ion concentrations, and therefore a longer range for the 
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1606 PRIEVE 

dmble-layer force, can be obtained. Using ,u = 10 g/cm-s, Eq. (58) is 
satisfied for Y 2 0.00 19 p, which is small enough to allow measurement 
of double-layer forces. Actually, Eq. (58) gives a conservative estimate 
of J since it does not consider that a particle's diffusion coefficient D may 
be orders of magnitude smaller than the bulk value D ,  when it is near the 
wall (a lower diffusion coefficient yields a lower J). 

With this same set of approximations, constraint (42) becomes 1 << J L /  
a = 2.5 X 10' L Substituting the smaller -8 found above, this corresponds 
to an injection of dW1< 25 pL. Such small injections are not unusual in 
liquid chromatography. Thus Eq. (42) is not a severe constraint. 

Other sources of error include additional dispersion of the slug owing to 
shear-induced collisions or to a distribution in the size of particles. Shear- 
induced collisions may deflect particles off their original streamline by as 
much as one diameter. Since the frequency of such collisions is proportional 
to the square of particle concentration, their effect can be minimized by 
injecting fewer particles, provided the detector is sensitive enough. A varia- 
tion in size of the injected particles can also contribute to dispersion since the 
most probable velocity of any particle depends on its size [recall v(a)  zz 
6 UaldJ. To neglect this effect, the standard deviation in particle size should be 
smaller than the desired spatial resolution of I$@). In practice, this may 
require further refinement of available standards. Surface roughness in the 
bottom plate will also have to be small compared to the spatial resolution 
desired for measuring @(y). This might be achieved by lining the bottom wall 
with a sheet of molecularly-smooth mica, Finally, Caldwell et al. (15) 
observe a flow-rate dependent ''lift" force which appears to act on low- 
density particles during steric FFF. This might be a minifestation of inertial 
migration of particles across streamlines which has been the subject of many 
other studies (16, 17). If this force is inertial in origin, then it can be made 
negligible by keeping the flow rate small, although this might make it 
impossible to meet the requirement of short retention time. 

Instead of using a chromatography column and detector to measure the 
residence-time distribution of an ensemble of particles, one could directly 
observe under a microscope the distribution of ve:locities assumed by a single 
sphere at different instants as it is translated horizontally by linear shear flow 
near a flat plate. This experiment would provide much greater flexibility in 
meeting the constraints imposed by the mathematical analysis and would 
completely avoid the ambiguities arising from the standard deviation in 
properties of an ensemble. We are currently attcmpting such an experiment 
with a single sphere. 

If successful, such an experiment would provide the first measurement of 
the potential profile between a colloidal particle and a plate. The result could 
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AXIAL DISPERSION OF SEDIMENTED COLLOIDS 1607 

be compared with theoretical predictions of the double-layer and van der 
Waals interactions. Even if only very long-range forces could be probed, this 
experiment ,may provide a valuable new tool for the study of colloids. 
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